Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Mol Biol ; : 168546, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38508301

RESUMEN

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.g., enzyme cofactors and drugs). IHMCIF serves as the foundational data standard for the PDB-Dev prototype system, developed for archiving and disseminating integrative structures. It utilizes a flexible data representation to describe integrative structures that span multiple spatiotemporal scales and structural states with definitions for restraints from a variety of experimental methods contributing to integrative structural biology. The IHMCIF extension was created with the benefit of considerable community input and recommendations gathered by the Worldwide Protein Data Bank (wwPDB) Task Force for Integrative or Hybrid Methods (wwpdb.org/task/hybrid). Herein, we describe the development of IHMCIF to support evolving methodologies and ongoing advancements in integrative structural biology. Ultimately, IHMCIF will facilitate the unification of PDB-Dev data and tools with the PDB archive so that integrative structures can be archived and disseminated through PDB.

2.
J Appl Crystallogr ; 56(Pt 4): 910-926, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555230

RESUMEN

By providing predicted protein structures from nearly all known protein sequences, the artificial intelligence program AlphaFold (AF) is having a major impact on structural biology. While a stunning accuracy has been achieved for many folding units, predicted unstructured regions and the arrangement of potentially flexible linkers connecting structured domains present challenges. Focusing on single-chain structures without prosthetic groups, an earlier comparison of features derived from small-angle X-ray scattering (SAXS) data taken from the Small-Angle Scattering Biological Data Bank (SASBDB) is extended to those calculated using the corresponding AF-predicted structures. Selected SASBDB entries were carefully examined to ensure that they represented data from monodisperse protein solutions and had sufficient statistical precision and q resolution for reliable structural evaluation. Three examples were identified where there is clear evidence that the single AF-predicted structure cannot account for the experimental SAXS data. Instead, excellent agreement is found with ensemble models generated by allowing for flexible linkers between high-confidence predicted structured domains. A pool of representative structures was generated using a Monte Carlo method that adjusts backbone dihedral allowed angles along potentially flexible regions. A fast ensemble modelling method was employed that optimizes the fit of pair distance distribution functions [P(r) versus r] and intensity profiles [I(q) versus q] computed from the pool to their experimental counterparts. These results highlight the complementarity between AF prediction, solution SAXS and molecular dynamics/conformational sampling for structural modelling of proteins having both structured and flexible regions.

4.
Acta Crystallogr D Struct Biol ; 79(Pt 2): 122-132, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762858

RESUMEN

In 2017, guidelines were published for reporting structural modelling of small-angle scattering (SAS) data from biomolecules in solution that exemplified best-practice documentation of experiments and analysis. Since then, there has been significant progress in SAS data and model archiving, and the IUCr journal editors announced that the IUCr biology journals will require the deposition of SAS data used in biomolecular structure solution into a public archive, as well as adherence to the 2017 reporting guidelines. In this context, the reporting template tables accompanying the 2017 publication guidelines have been reviewed with a focus on making them both easier to use and more general. With input from the SAS community via the IUCr Commission on SAS and attendees of the triennial 2022 SAS meeting (SAS2022, Campinas, Brazil), an updated reporting template table has been developed that includes standard descriptions for proteins, glycosylated proteins, DNA and RNA, with some reorganization of the data to improve readability and interpretation. In addition, a specialized template has been developed for reporting SAS contrast-variation (SAS-cv) data and models that incorporates the additional reporting requirements from the 2017 guidelines for these more complicated experiments. To demonstrate their utility, examples of reporting with these new templates are provided for a SAS study of a DNA-protein complex and a SAS-cv experiment on a protein complex. The examples demonstrate how the tabulated information promotes transparent reporting that, in combination with the recommended figures and additional information best presented in the main text, enables the reader of the work to readily draw their own conclusions regarding the quality of the data and the validity of the models presented.


Asunto(s)
Proteínas , ARN , Proteínas/química , Dispersión del Ángulo Pequeño , ARN/química , ADN , Difracción de Rayos X
6.
Methods Enzymol ; 678: 1-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641205

RESUMEN

Key to small-angle scattering (SAS) maturing and becoming a mainstream structural biology technique was the work done by the SAS community to establish standards for data quality, model validation and data sharing. Through a consultative process spanning more than a decade and a half, guidelines for publication have been established that include criteria for evaluating data quality and for model validation. In this process gaps were identified that stimulated innovation and development of new tools, for example new measures of model ambiguity and of the goodness-of-fit of a model to SAS data that complement the traditional global fit parameter χ2. The need for a global repository for biomolecular SAS data and models was identified and the SASBDB was established as a searchable, curated, freely accessible, downloadable database of experimental data, experimental conditions, sample details, derived models, and their fit to the data. Importantly, the SASBDB uses a common dictionary format that supports archiving of structures solved using integrative methods to support seamless data exchange with a federated system of public databanks that includes the world-wide Protein Data Bank (wwPDB) as the major repository for structural biology. Thus, biomolecular SAS is now well-positioned to achieve its full potential as a mainstream structural biology technique contributing at the frontier of integrative structural biology and meeting "best practice" standards for data quality assurance and data sharing.


Asunto(s)
Exactitud de los Datos , Biología Molecular , Modelos Moleculares , Bases de Datos de Proteínas , Dispersión del Ángulo Pequeño , Difusión de la Información
7.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1315-1336, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322416

RESUMEN

Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.


Asunto(s)
Benchmarking , Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Consenso , Reproducibilidad de los Resultados , Proteínas/química , Solventes
8.
Structure ; 30(1): 15-23, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34995477

RESUMEN

Applications of small-angle scattering (SAS) in structural biology have benefited from continuing developments in instrumentation, tools for data analysis, modeling capabilities, standards for data and model presentation, and data archiving. The interplay of these capabilities has enabled SAS to contribute to advances in structural biology as the field pushes the boundaries in studies of biomolecular complexes and assemblies as large as whole cells, membrane proteins in lipid environments, and dynamic systems on time scales ranging from femtoseconds to hours. This review covers some of the important advances in biomolecular SAS capabilities for structural biology focused on over the last 5 years and presents highlights of recent applications that demonstrate how the technique is exploring new territories.


Asunto(s)
Proteínas de la Membrana/química , Difracción de Rayos X/métodos , Modelos Moleculares , Dispersión del Ángulo Pequeño
9.
J Appl Crystallogr ; 54(Pt 6): 1902, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34963774

RESUMEN

[This corrects the article DOI: 10.1107/S1600576721007561.].

10.
J Appl Crystallogr ; 54(Pt 4): 1029-1033, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34429717

RESUMEN

Small-angle scattering emerged as a tool for studying noncrystalline structures from early observations around 1930 that there was a relationship between the extent of the scattering and the size of the scattering object. André Guinier, a leading figure in the development of the field, noted in his summary findings from the first Conference on Small Angle Scattering in 1958 that the technique would be of value to study 'submicroscopical inhomogeneities' and further provided a means of 'observation [that had] in the past restricted the field of application of the X-ray method.' In 1965 the first of what became a highly successful series of Small-Angle Scattering (SAS) meetings held approximately every three years took place in Syracuse, NY, USA, and many of these ongoing meetings published their proceedings and highlights in the International Union of Crystallography (IUCr) Journal of Applied Crystallography. Since the early 2000s, the relationship between the international SAS community represented at the triennial SAS meetings and the IUCr has been strengthened and deepened through formal cooperation and collaboration in a number of mutually beneficial activities that have supported the growth and health of the field and the IUCr.

11.
J Struct Biol X ; 5: 100043, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33458649

RESUMEN

The roles of ISL1 and LHX3 in the development of spinal motor neurons have been well established. Whereas LHX3 triggers differentiation into interneurons, the additional expression of ISL1 in developing neuronal cells is sufficient to redirect their developmental trajectory towards spinal motor neurons. However, the underlying mechanism of this action by these transcription factors is less well understood. Here, we used electrophoretic mobility shift assays (EMSAs) and surface plasmon resonance (SPR) to probe the different DNA-binding behaviours of these two proteins, both alone and in complexes mimicking those found in developing neurons, and found that ISL1 shows markedly different binding properties to LHX3. We used small angle X-ray scattering (SAXS) to structurally characterise DNA-bound species containing ISL1 and LHX3. Taken together, these results have allowed us to develop a model of how these two DNA-binding modules coordinate to regulate gene expression and direct development of spinal motor neurons.

12.
Structure ; 27(12): 1745-1759, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31780431

RESUMEN

Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Proteínas/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética
13.
J Biol Chem ; 294(30): 11404-11419, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31160341

RESUMEN

The E3 ubiquitin-protein ligase TRIM21, of the RING-containing tripartite motif (TRIM) protein family, is a major autoantigen in autoimmune diseases and a modulator of innate immune signaling. Together with ubiquitin-conjugating enzyme E2 E1 (UBE2E1), TRIM21 acts both as an E3 ligase and as a substrate in autoubiquitination. We here report a 2.82-Å crystal structure of the human TRIM21 RING domain in complex with the human E2-conjugating UBE2E1 enzyme, in which a ubiquitin-targeted TRIM21 substrate lysine was captured in the UBE2E1 active site. The structure revealed that the direction of lysine entry is similar to that described for human proliferating cell nuclear antigen (PCNA), a small ubiquitin-like modifier (SUMO)-targeted substrate, and thus differs from the canonical SUMO-targeted substrate entry. In agreement, we found that critical UBE2E1 residues involved in the capture of the TRIM21 substrate lysine are conserved in ubiquitin-conjugating E2s, whereas residues critical for SUMOylation are not conserved. We noted that coordination of the acceptor lysine leads to remodeling of amino acid side-chain interactions between the UBE2E1 active site and the E2-E3 direct interface, including the so-called "linchpin" residue conserved in RING E3s and required for ubiquitination. The findings of our work support the notion that substrate lysine activation of an E2-E3-connecting allosteric path may trigger catalytic activity and contribute to the understanding of specific lysine targeting by ubiquitin-conjugating E2s.


Asunto(s)
Lisina/metabolismo , Ribonucleoproteínas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Estructura Molecular , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ribonucleoproteínas/química , Alineación de Secuencia , Especificidad por Sustrato , Enzimas Ubiquitina-Conjugadoras/química
14.
Proteins ; 87(5): 425-429, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30788856

RESUMEN

Tandem beta zippers are modular complexes formed between repeated linear motifs and tandemly arrayed domains of partner proteins in which ß-strands form upon binding. Studies of such complexes, formed by LIM domain proteins and linear motifs in their intrinsically disordered partners, revealed spacer regions between the linear motifs that are relatively flexible but may affect the overall orientation of the binding modules. We demonstrate that mutation of a solvent exposed side chain in the spacer region of an LHX4-ISL2 complex has no significant effect on the structure of the complex, but decreases binding affinity, apparently by increasing flexibility of the linker.


Asunto(s)
ADN Intergénico/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Proteínas con Homeodominio LIM/ultraestructura , Factores de Transcripción/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , ADN Intergénico/química , ADN Intergénico/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas con Homeodominio LIM/química , Proteínas con Homeodominio LIM/genética , Ratones , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Mutación/genética , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética
15.
PLoS Comput Biol ; 14(12): e1006641, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30557358

RESUMEN

Many proteins consist of folded domains connected by regions with higher flexibility. The details of the resulting conformational ensemble play a central role in controlling interactions between domains and with binding partners. Small-Angle Scattering (SAS) is well-suited to study the conformational states adopted by proteins in solution. However, analysis is complicated by the limited information content in SAS data and care must be taken to avoid constructing overly complex ensemble models and fitting to noise in the experimental data. To address these challenges, we developed a method based on Bayesian statistics that infers conformational ensembles from a structural library generated by all-atom Monte Carlo simulations. The first stage of the method involves a fast model selection based on variational Bayesian inference that maximizes the model evidence of the selected ensemble. This is followed by a complete Bayesian inference of population weights in the selected ensemble. Experiments with simulated ensembles demonstrate that model evidence is capable of identifying the correct ensemble and that correct number of ensemble members can be recovered up to high level of noise. Using experimental data, we demonstrate how the method can be extended to include data from Nuclear Magnetic Resonance (NMR) and structural energies of conformers extracted from the all-atom energy functions. We show that the data from SAXS, NMR chemical shifts and energies calculated from conformers can work synergistically to improve the definition of the conformational ensemble.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas/química , Animales , Teorema de Bayes , Calmodulina/química , Proteínas Portadoras/química , Biología Computacional , Simulación por Computador , Humanos , Simulación de Dinámica Molecular , Método de Montecarlo , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Pliegue de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Nat Commun ; 9(1): 4097, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30291238

RESUMEN

Porphyromonas gingivalis is a keystone bacterial pathogen of chronic periodontitis. P. gingivalis is unable to synthesise the porphyrin macrocycle and relies on exogenous porphyrin, including haem or haem biosynthesis intermediates from host sources. We show that under the iron-limited conditions prevailing in tissue environments, P. gingivalis expresses a haemophore-like protein, HusA, to mediate the uptake of essential porphyrin and support pathogen survival within epithelial cells. The structure of HusA, together with titration studies, mutagenesis and in silico docking, show that haem binds in a hydrophobic groove on the α-helical structure without the typical iron coordination seen in other haemophores. This mode of interaction allows HusA to bind to a variety of abiotic and metal-free porphyrins with higher affinities than to haem. We exploit this unusual porphyrin-binding activity of HusA to target a prototypic deuteroporphyrin-metronidazole conjugate with restricted antimicrobial specificity in a Trojan horse strategy that effectively kills intracellular P. gingivalis.


Asunto(s)
Porfirinas/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas Bacterianas/metabolismo , Hierro
17.
Adv Exp Med Biol ; 1105: 77-100, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30617825

RESUMEN

This chapter provides a brief review of the current state-of-the-art in small-angle scattering (SAS) from biomolecules in solution in regard to: (1) sample preparation and instrumentation, (2) data reduction and analysis, and (3) three-dimensional structural modelling and validation. In this context, areas of ongoing research in regard to the interpretation of SAS data will be discussed with a particular focus on structural modelling using computational methods and data from different experimental techniques, including SAS (hybrid methods). Finally, progress made in establishing community accepted publication guidelines and a standard reporting framework that includes SAS data deposition in a public data bank will be described. Importantly, SAS data with associated meta-data can now be held in a format that supports exchange between data archives and seamless interoperability with the world-wide Protein Data Bank (wwPDB). Biomolecular SAS is thus well positioned to contribute to an envisioned federation of data archives in support of hybrid structural biology.


Asunto(s)
Exactitud de los Datos , Bases de Datos de Proteínas , Proteínas/química , Dispersión del Ángulo Pequeño , Conformación Proteica
18.
Adv Exp Med Biol ; 1105: 261-272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30617834

RESUMEN

Integrative or hybrid structural biology involves the determination of three-dimensional structures of macromolecular assemblies by combining information from a variety of experimental and computational methods. Archiving the results of integrative/hybrid modeling methods have complex requirements and existing archiving mechanisms are insufficient to handle these pre-requisites. Three concepts important for archiving integrative/hybrid models are presented in this chapter: (1) building a federated network of structural model and experimental data archives, (2) development of a common set of data standards, and (3) creation of mechanisms for interoperation and data exchange among the repositories in a federation. Methods proposed for achieving these objectives are also discussed.


Asunto(s)
Sustancias Macromoleculares/química , Modelos Moleculares , Biología Molecular
19.
J Mol Biol ; 430(3): 258-271, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29287967

RESUMEN

Methyl-CpG binding proteins play an essential role in translating DNA methylation marks into a downstream transcriptional response, which has implications for both normal cell function as well as disease. Although for many of these proteins, a detailed mechanistic understanding for how this cellular process is mediated remains to be determined. ZBTB38 is an under-characterized member of the zinc finger (ZF) family of methyl-CpG binding proteins. Functional knowledge has been gained for its conserved methylated DNA binding N-terminal ZF region; however, a specific role for the C-terminal set of five ZFs remains to be elucidated. Here we demonstrate for the first time that a subset of the C-terminal ZBTB38 ZFs exhibit high-affinity DNA interactions and that preferential targeting of the consensus DNA site is methyl specific. Utilizing a hybrid approach, a model for the C-terminal ZBTB38 ZFs in complex with its cognate DNA target is proposed, providing insight into a possible novel mode of methylated DNA recognition. Furthermore, it is shown that the C-terminal ZFs of ZBTB38 can directly occupy promoters harboring the newly identified sequence motif in cell in a methyl-dependent manner and, depending on the gene context, contribute to modulating transcriptional response. Combined, these findings provide evidence for a key and novel physiological function for the C-terminal ZF domain of ZBTB38.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Proteínas Represoras/metabolismo , Dedos de Zinc , Secuencia de Aminoácidos , Islas de CpG , ADN/química , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Proteínas Represoras/química
20.
Structure ; 25(9): 1317-1318, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877501

RESUMEN

Burley et al. (leadership of the Worldwide PDB [wwPDB] Partnership [wwpdb.org] and the wwPDB Integrative/Hybrid Methods Task Force) announce public release of a prototype system for depositing integrative/hybrid structural models, PDB-Development (PDB-Dev; https://pdb-dev.wwpdb.org).


Asunto(s)
Bases de Datos de Proteínas , Proteínas/química , Internet , Modelos Moleculares , Conformación Proteica , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...